第199章 常见基本函数的导数

文曲在古 戴建文 1209 字 1个月前

第 199 章 常见基本函数的导数

经过上一次对导数定义的深入探讨,学子们对于导数这一概念已经有了初步的认识和理解。新的一天,戴浩文再次登上讲堂,准备为学子们揭开常见基本函数导数的神秘面纱。

戴浩文目光温和地看着台下的学子们,开口说道:“诸位,上回咱们初识了导数,今天咱们要更进一步,来探究一些常见基本函数的导数。”

他转身在黑板上写下了几个函数:“首先,咱们来看最简单的常数函数,比如 f(x) = C,其中 C 是一个常数。”

戴浩文停顿了一下,接着解释道:“对于常数函数,无论 x 如何变化,函数值都保持不变。那么当我们计算它的导数时,假设 x 有一个增量 Δx ,则函数的增量 Δy = f(x + Δx) - f(x) = C - C = 0 。所以,常数函数的导数为 0 。”

为了让学子们更直观地理解,他举了个例子:“就好比你有一箱固定数量的苹果,无论时间怎么过去,苹果的数量都不会变,它的变化率就是 0 。”

看到学子们露出若有所思的表情,戴浩文继续在黑板上写下:“接下来,咱们看幂函数 f(x) = x^n ,其中 n 为正整数。”

他放慢语速说道:“我们还是按照导数的定义来计算。Δy = (x + Δx)^n - x^n ,这需要用到二项式展开定理。经过一系列的化简和计算,当 Δx 趋近于 0 时,我们可以得到 f'(x) = n x^(n - 1) 。”

担心学子们被复杂的计算过程弄晕,戴浩文又以 f(x) = x^2 为例,逐步演示了计算过程。

“大家看,对于 f(x) = x^2 ,Δy = (x + Δx)^2 - x^2 = 2x Δx + (Δx)^2 ,那么 Δy/Δx = 2x + Δx ,当 Δx 趋近于 0 时,导数就是 2x 。”

“再比如 f(x) = x^3 ,你们按照刚才的方法自己试着推导一下。”戴浩文给学子们留出了思考的时间。

随后,他又讲到了指数函数:“咱们来看 f(x) = e^x ,这是一个非常重要且特殊的函数。”

戴浩文在黑板上写下推导过程:“Δy = e^(x + Δx) - e^x = e^x (e^Δx - 1) ,当 Δx 趋近于 0 时, (e^Δx - 1) / Δx 的极限是 1 ,所以 f'(x) = e^x 。”

“这意味着 e^x 的导数还是它本身,是不是很奇妙?”戴浩文笑着说道。

接着是对数函数,戴浩文说道:“对于 f(x) = ln x ,同样按照定义来计算,经过一番推导,我们可以得到 f'(x) = 1 / x 。”